skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Erba, Christiana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The mass-loss rates from single massive stars are high enough to form radio photospheres at large distances from the stellar surface, where the wind is optically thick to (thermal) free–free opacity. Here we calculate the far-infrared, millimeter, and radio band spectral energy distributions (SEDs) that can result from the combination of free–free processes and synchrotron emission, to explore the conditions for nonthermal SEDs. Simplifying assumptions are adopted in terms of scaling relations for the magnetic field strength and the spatial distribution of relativistic electrons. The wind is assumed to be spherically symmetric, and we consider the effect of Razin suppression on the synchrotron emission. Under these conditions, long-wavelength SEDs with synchrotron emission can be either more steep or more shallow than the canonical asymptotic power-law SED from a nonmagnetic wind. When nonthermal emission is present, the resultant SED shape is generally not a power law; however, the variation in the slope can change slowly with wavelength. Consequently, over a limited range of wavelengths, the SED can masquerade as approximately a power law. While most observed nonthermal long-wavelength spectra are associated with binarity, synchrotron emission can have only a mild influence on single-star SEDs, requiring finer levels of wavelength sampling for the detection of the effect. 
    more » « less